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Abstract —-Cracks in  brittle adhesive layer joining two substrates hiave been observed to propagate
i a vanety of ways, including stringht or wavy paths within the adhesive layer, paths along one of
the interfuces, and paths alternating from interfiace to interface through the layer. The effective
toughness of the joint depends on the nature of the path. An asymptotic clasticity problem is
analyzed in this paper which allows one to predict whether a straight crack path can occur within
a brittle adhesive layer. {n the asymptotic problem, an adhesive layer between two semi-infinite
blocks contiins a semi-intinite straight crack. The joint s loaded remotely by the first three terms
of the stress tickd expansion Tor 4 cricked homogencous solid, parameterized by stress intensity
fuctors K} and K)j. and the non-singular stress acting parallel to the crack, 7. These are the
apparent, or applicd. load factors determined from the analysis of an actual specimen by neglecting
the presence of the layer. Also present is o residual stress in the adhesive Tayer, We caleulate the
local stress intensity factors, Ky and Ky, and the non-singular stress, 77 associited with the field at
the tip of the crack in the fayer in terms of the corresponding applicd quantitics and the residual
stress. A necessiry condition for the existence of a straight path within the layer is the location of
a path with Ky = 0, Such a path will only be stable (e, grow in a strught, non-wavy manner) i’
T <2 0. Our analysis provides the location ol the crack in terms of the combination ol applied
intensity factors and the mismatch in elastic moduli between the layer and the adjoining material.
Stability depends on the restdual stress and 777, as well as on the moduli mismateh. For a compliant
adhesive with predominant applicd mode 1 loading, the crack will tend to run stably within the
Layer unless 77 and the residual stress are positive and relatively large.

INTRODUCTION

The subject of the present paper is o study cracking confined to brittle adhesive layers. In
the present context, an adhesive layer is said to be brittle if the size of the plastic zone
around a crack tip, r,, is small compared with the layer thickness, A, namely,

I (1\'., 3< H 0
r,o=
P~ 3n\oy, 23

where K, is the fracture toughness and a, the yield stress of the bulk adhesive, respectively.
Examples of adhesives that have been used to join ceramics are given in Table 1. The layer
thickness, /1, is typically of the order of 100 um. Thus, judged from egn (1). epoxy and
glass are brittle adhesives, while aluminum is ductile.

Wang and Suo (1990) have measured the fracture cnergy of an cpoxy layer joining
two aluminum alloy half-disks using sandwiched Brazil nut specimens. When the base
specimen is subjected to predominantly mode [ load. they observed that the crack often
runs within the epoxy layer rather than along the epoxy-aluminum interface. although
the fracture energy for epoxy is two or more times higher than that for the particular
epoxy/aluminum interface. Such a peculiar phenomenon has also been observed by other
authors [e.g. Cao and Evans (1989) and Cao (1989)]. As a consequence. the measured
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Table 1. Plastic zone size of several adhesives

Adhesive K, (MPam'?) a, (MPa) r, (um)
epoxy 0.6 85 3
glass 0.7 =0
aluminum 30 100 Ix10?

effective fracture energy of the joint G, versus the combination of remote loads has the
discontinuous characteristics of Fig. |. For predominantly mode [ loading with only a small
component of mode I, the fracture occurs within the epoxy layer, and the measured G, is
the fracture energy of the bulk epoxy. G.. When the mode [l component is sufficiently
large, typically tan= (K7 /K[) = 15", the crack runs along the epoxy/aluminum interface
and the measured G, is the mode-dependent intertacial fracture energy.

The issues of crack path selection and stability can be addressed in terms of the
asymptocic stress field around the crack tip. Let (r, #)) be polar coordinates centered at the
tip of a traction-free crack in a homogeneous isotropic solid. The Williams asymptotic
expansion of stresses is

[a” a] K, [d..,w) dt,'(o)]
N vl ER UGN
K, [6%(0) &) T 0 o
Y mloso aso]tlo ofTOVD B

where K, and K, are stress intensity factors of opening and shearing modcs, respectively,
and the constant term T is a stress acting parallel to the crack pline. The nondimensional
0-dependent functions are normalized so that the stresses ahead of the crack tip (0 = 0) are

given by
T, g, I\—( | 0] Ku [0 | :I l: T 0] )
= oo + iz + +0(/r). 2a
[G” a‘":' J2mr [0 e f2rrLl 0 0 0 v )

[t is an experimentally established fact that a crack advancing continuously in an
isotropic homogencous brittle solid selects a trajectory where Ky = 0. Symmetry dictates
that a crack along the centerline of a layer joining ideatical materials and subject to remote
pure mode I loading will be under pure mode [ locally. When the base specimen carries
some mode I in addition to mode [, the cruck may find a pure mode I path off the centerline,
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Fig. 1. Schematic of observed toughness of an epoxy layer between aluminum substrates, from tests
of Wang and Suo (1989).



Crack path selection in bnittle adhesive layer 1685

According to Cotterell and Rice (1980), a straight crack advancing with Kj; =0 is
directionally stable if T < 0 and unstable if T > 0. This assertion may be interpreted in the
following way. If the straight path of a mode I crack is perturbed as the crack tip advances
due to some micro-heterogeneity, a positive T-value will cause the crack to veer away from
the straight trajectory while a negative T-value will pull the path back in line. In other
words, a straight path within the adhesive layer can only exist if a pure mode [ crack path
exists and if its tip has T < 0. The present analysis permits this assessment to be made. In
addition, we discuss the behavior of a straight crack positioned away from the pure mode
[ trajectory to evaluate whether it kinks toward the pure mode [ trajectory or towards the
interface.

AN ELASTICITY PROBLEM AND ITS SOLUTION

An elasticity problem that addresses the above issues is introduced in Fig. 2. An
adhesive layer of thickness H is sandwiched between blocks of an identical solid. Each solid
is taken to be tsotropic. homogeneous and elastic. with shear modulus and Poisson’s ratio
(.. v,) for the adhesive, and (u.. v,) for the substrates. The plane strain problem is considered
since the out-of-plane dimension of the joint is assumed to be much larger than the layer
thickness. A crack lies parallel to the interfaces and is located within the layer at a distance
¢ above the lower interface. We consider the asymptotic problem wherein the crack is semi-
infinite and the blocks are semi-infinite as well. This is appropriate when the adhesive is
very thin compared to other in-plane lengths in a given specimen or geometry.

The non-dimensional parameters that characterize this bimaterial structure are the
relative crack depth, ¢/ H, and the Dundurs (1969) elustic mismatch parameters

=)y = =v)/p

2 _ 1 (l -—2v-l)/ltl—(l —2"‘)/!‘\
B ( I - v.l) "ll‘l + ( |- V\)J/“\

. =1 .
f 2 (T=v )+ (1 =v)/n,

Two other combinations appear frequently and are related to Dundurs’ parameters by

E,

| -2 | 1-f
. = . 6= In .
£, 1+ax 2n 1+ f

3a)
Here £ = 2u/(1 —v) is the plane strain tensile modulus, and ¢ is the oscillatory index
responsible for various pathological behaviors in linear elasticity solutions for bimaterial
intertiuce criacks. Observe that ff = 2/4 when v, = v, = 1/3, and that values of x and ff for
many bimaterials are clustered near the line ff = %/4 on the (2, ff) plane (Suga er ul.. 1988).
For this reason, solutions in this paper are sometimes plotted using only one clastic
mismatch constant x, with the understanding that f# = 2/4.

There are four independent load-like quantitics in the problem. A residual stress, o,
cxists in the adhesive due to thermal mismatceh or other sources. Let Ky L Ay and 7 denote

KT
T___K‘;;
Tm.__ [FETRY S
—-— d d“ 3 0'0 S,
+ ! IH A~ Ha'Va
<
- Hs.Vs .

4 loads K™ Ky, T 0°
Fig. 2. The elasticity problem.

SAS 27:11-F
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the crack-tip quantities evaluated for the actual specimen or geometry neglecting the
presence of the layer. We refer to these as the applied loads determined from the homo-
geneous buase specimen. They are related to the applied loads and geometries as can be
found in Tada et al. (1985) for K values and Larsson and Carlsson (1973) for T values.
The remote field in the asymptotic problem in Fig. 2 is specified by K\“. Ai. T and ¢".
The solution of the elasticity problem provides the local K. A}, and T at the crack tip within
the layer in terms of the remote load-like quantities. Note that the local quantities are
different from the remote ones because of elastic dissimilarity and the residual stress. A
general integral equation formulation for cracks in layered composites has been presented
by Erdogan and Gupta (1971). The solution procedure we adopt follows directly from Suo
and Hutchinson (1989). and is described in detail in Appendices A and B.

The local T-stress depends lineiarly on all four loading parameters. Dimensional and
compatibility arguments lead to

- Ki | Ka
T‘—"'I'Tz‘Tl +0'”+(']—‘l::+('||"/l,é (4)
VAN

where the coefficient of T is readily evaluated and ¢" denotes the o, component of
residual stress pre-existing in the layer. The two non-dimensional functions, ¢,(¢/H. a. ff) and
enle/H, o, ). were computed as detailed in Appendices A and B and are tabulated in
Appendix C.

Consider the local stress intensity factors next. Itis seen that both a” and 7' do not
induce a stress intensity at the erack tip by the following argument : when no crack is present
in the layer, 6" and T cause no traction on any plane parallel to the layer. One concludes
that the local (A}, Kyp) depend only on the remote loads KL K. The two sets are connected
by the energy release rate duce to conservation of the J-integral, namely

S B ]
G=J= o (Ki+Ki) = p (KO + (K] (5)

L,

Algebraically. eqn (5) is equivalent to

AT A L
K = (K cosp—K|) sin¢h)

I +2

, -2\ ., .

Ky=1. (K" sin ¢+ K|j cos ) (6u)
I+

or
e L—2\'?
(I\|+ll\||) = (All +|1\[| )C“[‘ (6b)
|+

where ¢ can be interpreted as a phase angle shift between the remote and the local stress
intensitics, ¢ = tan ' (K /K) —tan "(K,{/K{ ). Dimensional considerations and lincarity
dictate that ¢ is only a function of structure, i.c. ¢ = p(c/H. 2. f). This functional depen-
dence has also been computed and is given below.

Two solutions exist in the literature which enable us to obtain ¢ when ¢/ /1 is sufficiently
small or sufficiently close to unity. A sub-interface crack very close to the intertace has been
analyzed by Hutchinson ¢t al. (1987). The local K, and K, can be expressed in terms of the
complex stress-intensity factor K for the corresponding problem where the crack lics on the
interface. The connection between the two sets of intensity factors when the crack lies just
below the interface is
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where the function ¢, (a. B) is given in Hutchinson et al. (1987). The complex stress intensity
factor K when the crack lies in the upper interface of the sundwich structure is solved in
Suo and Hutchinson (1989) and is given by

1 — 12
K - <l _/;l:> (K[L +il\'l1i )H - euu(x.lil (8)

where the function w(x.f) s tabulated in Suo and Hutchinson (1989). Eliminating K from
the above two formulae. one obtains the connection between the local and remote stress
intensity factors which is valid when (H —¢). H is sufficiently smail:

krike = () g vikny(FEY aonen o
1 = l+2 | n H . ¢

The corresponding formula for ¢/ H near zero s

Ki+iKy = 'f“)l ki ©) e e ©9b)
{ 1 |+1 | t H 3

The quantity ¢ defined in (6) is antisymmetric about the center of the layer, i.c. ¢ is an odd
function of ¢/ # — 172, The following approximation to ¢ has the desired antisymmetry and
has the correct asymptotic behaviors, (Ya) and (9b),

¢ =ln <”">+2<‘ - I>((/),,(2./)')+u)(:z,[f)). (10)
¢ H 2

By comparing (10) with the computed values of ¢ we have found that this approximation

is highly accurate. A comparison between the approximation (10) and computed values is

shown in Fig. 3, where ¢ is plotted as a function of ¢/#H for several values of a (with

ff = 2/4). The combination ¢, + w is tabulated in Appendix C.

( B za/4)
approximate
3§ T formuta
Te t « Numerical
solution

Fig. 3. Phase angle ¢ = tan™ ' (A &) —tan ' (K i /Ky ) for several x values. The full numerical
solution is compared with the asymptotic formula, egqn (10). Attention is restricted to ff = 2/4.
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In summary. the solution to the elasticity problem in Fig. 2 is given by (4) und (6) with
¢ and ¢, tabulated in Appendix C and ¢ given with high accuracy by (10). This solution
is now applied to several practicul issues in adhesive joint fracture testing.

ELASTIC STRESS SHIELDING FOR A COMPLIANT ADHESIVE

[n practice. the fracture energy G, for adhesive joints is calculated from the measured
critical loads by neglecting the presence of the adhesive layer. Provided the layer thickness
is small and the crack is long and parallel to the layer. conservation of the J-integral implies
that this measure of G, equals the actual energy released at the crack tip regardless of the
crack location (within the adhesive or along the interface). The value of the fracture energy
G 15 G, for the adhesive if a straight mode [ path actually occurs within the adhesive. or
1s the adhesive substrate interface fracture energy at the relevant mode of loading if the
crack propagates along the interface.

Under remote mode [ loading, a crack along the centerline in the layer is locally mode
[. If this is a stable crack path and if there is no microstructural change due to the bonding
process. the adhesive fractures when the local A attains the toughness of the bulk adhesive
K. Specialized from (35) by sctting Ky = K\p = 0. the apparent adhesive toughness is

» AU ) E\ 12 )
/\,‘__<l_1> I\":(Ef.) K. (IH

An analogous formula was obtained by Wang er ol (1978) for the double-cantilever
specimen.

In practice, adhesives are usually less rigid than substrates, so that the apparent fracture
toughness, measured by the applied stress intensity factor, K. is higher than the toughness
of the bulk adhesive, Ay,. Such an cffect is due entirely to the clastic mismatch of the two
solids and may be referred to as an clastic stress shiclding effect. As an example, consider
the glass/alumina system. Taking x = 0.7, ¢yn (1) predicts a ratio K /K, of 2.4, This is
in good agreement with the measured tracture toughness values of Zdaniewski er al. (1987).

STABILITY OF CRACK TRAJECTORY UNDER APPLIED MODE | LOADING (K}, =0)

To focus the discussion, assume that the base specimen is subject o a pure mode |
loading (A} = 0} so that the centerline of the adhesive layer is a crack trajectory satisfying
Ky = 0. A necessary condition for such centerline trajectorics to be observed is that 77 < 0,
as already remarked. The behavior of a straight crack displaced away from the centerline
suggests another parameter which affects the nature of the crack trajectory. Consider a pre-
existing straight crack somewhat ofl the centerline in the adhesive layer. As illustrated in
Fig. 4. if the crack lies above the centerline, 1t will kink down towards the centerline if
Ky > 0. A formal statement for a crack slightly ofl'a path with K, = 0 to kink towards that
path is ¢R,/Ce > 00 In other words, a pre-existing crack which s slightly displaced or
misaligned will only head towards the centerline (i.e. the path with Ky = 0) iF 6K Fe > 0.

I
d substrate
——__n
— e —
t 1

1 substrate

Fig. 4. For Ki = 0. a crack above the centerline kinks towards the centerline when Ky > 0. In
general for slightly displaced cracks, the kink will be towards the centerline it ¢Ky/éc > 0.
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Fig. 5. Conjectured trajectories of crack advance when Ky = 0 for a crack displaced slightly off the
centerline, depending on the signs of T and ¢Ky ¢c.

These considerations suggest that there are four different patterns of fracture behaviors
depending on the signs of T and ¢ Ky, Ce, as illustrated in Fig. 5. We discuss them in turn.

Crack runs stably along the centerline (pattern A)

This is expected when AR /¢ > 0and T < 0. A pre-crack slightly above the centerline
will kink towards the centerline because of the positive Ky, and the compressive T-stress
stabilizes the centerline path.

Crack trajectory is wary about the cemerline (pattern B)

This is expected when dRL /e > 0 and 77> 0. Again a pre-crack slightly above the
centerline is driven towards the centerline because of the positive Ky, but the tensile 7-
stress destabilizes a crack along the centerline. As a consequence of the two competing
effeets, the crack trajectory will cither be wavy il the positive T is not too large and the
positive CRy /e can drive the crack back to the centerline, or the crack will diverge towards
and join the intertface it the positive 7' is sufliciently large. Quantitative determination of
this wavy trajectory has not been performed in this work. To do so would require one to
track the wavy path by enforcing the local Ky = 0. An analysis of this type has been
performed by Fleck (1989), where curved trajectories with Ky = 0 for an array of micro-
cracks were determined.

Cruack approaches the interface gradually (pattern C)

The negative K drives a crack away from the centerline, while the compressive T-stress
ensures the crack approaches the interface at a small angle. Under remote mode I load, for
some material combinations, we find an additional straight path satisfying K, = 0 off the
centerline near one of the interfaces (see Fig. 9).

Crack approaches the interfuce ar a large angle (pattern D)

Figure 5 includes the situation where &K}, '¢e < 0 and T > 0. The crack kinks in an
unstable fushion towards the interface.

The sign of ¢Ky;/¢e at the centerline can be determined from (6a). It depends only on
elustic mismatch constants x and ff. Plotted in Fig. 6 is the contour of ¢K,;/¢c = 0 on the
(2. /) plunc. For material combinations with a compliant adhesive layer (2 > 0, fi = 2/4),
cKy/éc s positive,

The T-stress is calculated from cqn (4), which when specialized by taking Kf = 0 and
using (11). gives

T SR ,
e 7 Ta Y (12a)
V
|~ 1+2\'* K,
T= l‘:% T- +an+<ii&) } *‘J". (12b)
A \/f",
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o

Fig. 6. Regimes of crack path selection tor a base specimen subject to mode [ loading (K7 = 0).
The contour for 7 = 0 must be shifted if ¢” and, or T* are significant.

_0.2}

Fig. 7. Coctlictent governing contribution to 7' from Ky inegn (12). ¢/H = 0.5, fi = 2/4.

Figure 7 presents (5 2, f5) as a tunction of x (setting f# = 2/4), indicating that a negative
contribution to the local 7-stress is made from the last term in (12) when the layer is
compliant. The contour ¢,(}. 2. ff) = 0 is also plotted on Fig. 6. If the contributions of ¢
and T in (12) are negligible, the two contours shown in Fig. 6 divide the (%, ff) planc into
four regions, labeled as A, B, C, D, corresponding to the four fracture patterns discussed
above. The contour for 7= 0 in Fig. 6 shifls with finite contributions from ¢* and T *.

CRACK DEPTH SELECTION WHEN A #0

If the remote loading is somewhat perturbed from mode [, one anticipates that the
crack will tind a path off the centerline to restore Ky = 0 locally. This can be addressed
rigorously by sctting Ky, = 0 and K| = K|, in ¢qn (6). giving

I 12 | + P2
I\-II = ( +1> I\'Ir CcOs (l). I\‘Itl = - («; z) K[,, sin (p (IJ)

| —x 1
where ¢(c/H. z. ) must satisfy
tang = — K\ /K, . (14)

The location of the crack. ¢, is obtained from (14) using (10); note that ¢/ H must be such
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Fig. 8. Crack path selected when Ky is finite, The crack finds a path of the centerline to restore
Or = 0 locally. For 2 < 0 the crack paths are unstable in the sense ¢Kyy 'de > O ata fixed Ky LKy

that ¢ is of equal magnitude and opposite sign to the phase angle of the remote loading.
The location of the crack as a function of K,j /K is shown in Fig. 8 for several x-values
(setting # = 2/4). For example, if the remote loading is such that Kii /A =0.1and 2 = 0.8
(ff = 0.2), the crack with Ky = 0is located a distance ¢ = 0.09 H above the lower interface.
The existence of a mode 1 crack in the layer when K # 0 can only occur if there is a
moduli mismatch,

The location of the crack ¢/ for which Ky = 0 is given as a function of K /K| in
Fig. 9a. for x = 0.9 and various ff values. A new type of behavior is evident: for  small
and positive, such as ff = 0.1, there may exist three locations satistying K, = 0. Consider
remote mode 1 loading, with x = 0.9, f# = 0.1. The centerline of the layer satisfies K, =0
but is an unstable path in the sense A /de < 0. Two other locations exist where K, = 0;
these are close to cach intertace and are stable in the sense 0K, /0c > 0. Cracks paralleling
close to an intertace have been addressed previously by Hutchinson ¢t ol (1987).

The two regimes of (., ff) space for which three crack locations satisfy Ay = 0 are given
in Fig. 9b. The regime in which 2 < 0 and the regime in which 2 > 0 show gualitatively

(o) g J

(@=09)
KT

K

Fig. 9. (a) Location of crack satisfying K, = 0 as a function of K}j /Ky for a compliant layer

(x = 0.9). for various values of ff. For f# small and positive there can be three locations satislying

Ku = 01 two ol these locations are near the interface and are stable in the sense ¢K,,/ée > 0 ata

fixed Ky, Kj . (b) The cross hatched region shows the regime of (2, ff) for which three crack locations
satisly Ay = 0.
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Fig. 10. Coeflicient in egn (15a) for T, for a crack located in the layer with K, = 0. ff = x 4.

similar ¢/H versus K{j /K" behaviors. Few practical material combinations lie in either
regime.

Next, we examine the T-stress local to the crack tip. for a crack on a straight path with
K, = 0and K| = K. The position of the crack path is fixed by the ratio K7 /K| . Combining
(4), (13) and (14), we get

I 2 R K¢
I = T 40’ + (¢ ~cpy tan ) (15a)
1+
H
| —x A K
T=_ . "T"+a"+ Bk (crcosd—cysing) {15b)
I+ | —x /

N2

The last contribution in (15a) is plotted in Fig. 10 as a function of K3 /K for various
values of the clastic mismatch 2. As in the case when Ky = 0, a straight crack with K = 0
in a compliant layer will have 77 < 0 unless 77 and/or a” are positive and sulliciently large.

CASE STUDIES

Two technically important adhesive systems, epoxy joining metals or ceramics and
glass joining ceramics, will be examined in this section using the concepts and numerical
results developed above. The relevant mechanical properties used in our discussion are
given in Tables | and 2. For simplicity, we only consider the situation where the base
specimen is under remote mode [ loading so that the centerline in the adhesive fayer is a
pure mode [ path (K, = 0).

The calculated elastic mismatch constant x is 0.9 for aluminum/epoxy, and 0.7 for
alumina;glass, with f = 2/4 in cach case. Observe that for both cases 0Ky /¢ > O (Fig. 6),
indicating that a straight crack off the centerline kinks towards the centerline. Whether the
crack is stable depends on the sign of the local T-stress.

Focus on the first term in eqn (12). For common buse specimens, there is only onc

Table 2. Mcechanical propertics

Thermal expansion Young's modulus  Poisson’s

Material coethicient (MK) ' (GPa) ratio
cpoxy 70 4 0.34
aluminum 24 T 0.35
glass-70359 5 68 0.24
glass-7570 9 55 0.24

alumina 7 350 0.25
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independent applied external load acting on the specimen. implying that T* is linearly
connected to K*. namely

T* = gKi/\Ja (16)

where g is a dimensionless function of the geometry of the homogeneous base specimen,
and « is the crack size. Finite element calculations by Larsson and Carlsson (1973) show
that ¢ is somewhere between ~0.6 and +0.2 for several commonly used homogeneous base
specimens. For a typical adhesive joint fracture specimen. the crack size is larger than the
adhesive thickness by several orders of magnitude, i.e. a H >» 1. If the adhesive is more
compliant than the substrates, say x > 0.3, the first term in (12a) is negligible compared
with the third. Hence for systems with compliant adhesives. such as aluminum‘epoxy and
alumina‘glass. it is adequate to consider the competition of the last two terms in (12) only.
Note that both are independent of the base specimen geometry. so the conclusions we draw
below are independent of specimen type.

The last term in (12) is always negative for compliant adhesive layers ; thus the total
T-stress is necessarily negative if the residual stress is negative. For alumina/glass-7059. the
thermally-induced residual stress in the glass layer is negative ; see Zdaniewski ¢f al. (1987).
Our theory therefore predicts that the crack will run stably within the glass layer under
remote mode [ loading (pattern A in Fig. 5). This is observed experimentally by Zdaniewski
et al. (1987).

When the residual stress is positive, a numerical estimate is needed to identify which
termin (12) is dominant. For the alumina/glass-7570 system, the difference between room
temperature and the softening temperature of the glass is 343 K and the residual stress is
estimated to be S0 MPa, while the third term in (12) is approximately — 37 MPa (H = 50
pm s taken). The total 7T-stress is thus positive. A wavy fracture trajectory (pattern B in
Fig. 5b) is theretore expected and was observed in experiments by Zdaniewski e al. (1987).

The residual stress in an epoxy Liyer joining two ceramics or metals is usually positive
duc to thermal and or cure shrinkage. However, our estimates indicate that the magnitude
of the residual tensile stress is often less than the third termiin (12), resulting in a negative
T-stress. This is due to the low Young's modulus of epoxy compared to the substrate
materials. For example, if two aluminum substrates are glued together by un epoxy layer
of thickness /1 = 0.1 mm at 350 K, the thermal tensile stress is about 15 MPa, but the third
term in (12) is —40 MPa. Pattern A in Fig. 5a is anticipated : the crack runs stably within
the cpoxy layer instead of along the interfaces under predominantly remote mode [ loading,
as confirmed experimentally by Wang and Suo (1990) and Cao and Evans (1989).

Chai (1987) has observed a wavy crack path in an epoxy layer between aluminum
substrates. The crack jumps periodically from one interface to the other across the epoxy
fayer. The difference in response between the tests performed by Chai and the tests of Wang
and Suo (1990) and of Cao and Evans (1989) may be explained in terms of a different sign
of the local T-stress. Chai used a heat-setting epoxy of thickness #/ = 0.25 mm ; the estimated
thermal stress is ¢° = 60 MPa while the component of T-stress from the remote loading
{the third term in eqn (12a)] is —25 MPa. Hence the total local T-stress is positive in Chai's
experiments and the crack is unable to run stably within the epoxy layer. In the work of
Wang und Suo and of Cao und Evans the local T-stress is negative and the crack runs
stably within the cpoxy layer.

Next, we mention some recent fracture tests by Thouless (1990) using double cantilever
beam specimens with a model interface consisting of wax/soda lime glass. Thouless obscrved
the crack to run stably along the centerline of the wax layer, in a double cantilever beam
sandwich specimen under remote [ loading. We expect that the crack will adopt this path,
based on the following evaluation of the local T-stress. From values provided by Thouless
(1990) and by a private communication, the first term in eqn (12a) is negligible compared
to the other two terms, the second term (residual thermal stress) equals 3 MPa and the
third term cquals —6 MPa. Thus the net T-stress is negative and we predict a stable crack
path along the centerline of the wax layer. This result can be contrasted with the double
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cantilever specimen of a homogeneous material for which onfy the first term in (12a) is non-
zero and positive, leading to the well-known unstable cracking behavior of this specimen.

SUMMARY OF RESULTS

Consider the typical combination of an adhesive layer which is more compliant than
the substrates. with x > 0. f = 24, Analysts shows that, provided the residual stress in
layer ¢" ts not large and positive. a pre-existing crack in the layer remains trapped in the
layer for substantial deviations from pure remote mode [ loading. The location of the cruck
in the layer depends upon the ratio K[ /K" for any given x and f8. If 6" is large and tensile.
the crack may escape from the layer or may grow along an oscillatory path within the layer.

Now consider a crack in a luyer which is stiffer than the substrate, withx < 0, 8 = 2.4,
A K, = 0 path can be found in the layer under remote mixed mode loading. However, the
crack will propagate into the interface as CK, /¢ < 0. regardless of the sign of 7. Unless ¢”
is lurge and negauve, T is positive and the crack is destabilized further.
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APPENDIX A INTEGRAL EQUATION FORMULATION AND SOLUTION

In thas Appendix, we set up and solve the integral equation for the plane clasticity problem specitied in
hl

fig. 2

AL Formudation of integral cquation

A Liyer of material I is sandwiched inan infinite medium of material 1. Each material is taken 1o be isotropic
and hincar elastic. A senu-infinile crack Hes o distance ¢ above the lower interfuce, in the adhesive layer, The
thickness f7 of the layer is taken to be unity since the # dependence of the solution is known. A Cartesian
coordinate system is centered on the crack tip, with the v, axis coincident with the crack.

We prescribe loading in the tar field as the stundard crack tip ficld of a crack in a homogencous body,
characterized by the remote stress intensity factors A7 and Ay . [The next higher order term T s explicitly
incorporated in the sofution (12b) already.] The asymptotic problem of the cracked adhesive layer is solved in
terms of Ay and Ay by the method of distributed dislocations, The crack is modeled by a distribution of
dislocutions such that the tractions on the crack line vanish Plane strain deformations are assumed ; for plane
stress, replace v by v (4 v).
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Let b,($) be the x, component of an edge dislocation located on the crack line at x, = Z, x, = 0. The stresses

at point x, = x, x. = 0 on the crack line induced by the dislocation are given by
— H: hl h’(’:) = H Al
0.:(x) —4zll_‘,:)(-‘_§+ﬁ,(.‘ NEAN (AD

where the repeated suffix j, here and elsewhere, refers to a sum over j = 1,2. The kernels £ (x - ) are constructed
in Appendix B. They are well behaved in the whole range — x < § < x. with asymptotes

l
L9 = O(;) as g - x. (A2)

>

A semi-infinite crack is represented by a distribution of dislocations lying aleng the negative x, axis, such
that the tractions vanish for x, < 0. Thus. the distribution b,($) for ¢ < 0 is governed by

v o2b,(E
f L) =Dk =0, x<0, =12 (A3)

e x=¢

where the first integral is the Cauchy Principal Value integral.
The crack face displacements , are related to the dislocation distribution by

alll

8,(x) =J b(3)dE, x <0, i=12 (Ad)

The form of b,($) must be such that the crack displicements approuach the remote ficld specified by K7 as § =«
and must be consistent with the near-tip ficld with unknown intensity K as § — 0. Thus,

2 l—v
A ~ oo T (=) K

(AS)

s

'y
3
t
<

‘ z 1
V —2nd H

and
2 l—v,
h(d) ~ (=) K, as

P 7 NI

-0 (AD)

i

N

where K denotes the mode 1T stress intensity tactor Ky, and A, denotes the mode | stress intensity factor K.
In order to reduce the range of the integral equation to a finite interval, we make the changes of variables

u—1
Xx= - =l<u<l
u+l
P, l<i<l (A7
Tl )
which gives
. B 2u—1)
{=x—§= r e (A8)

(u+ e+ 1)’

Then, with ¢,(¢) = b,($). the lincar system of two integral equations becomes

CED e | n@em =0, < (A9)
=0+ h Jretat e =0
where f denotes the Cauchy Principal Value integral,
Bused on the asymptotic behavior of b ($) as § = 0 and § —= — «, a complete representation for ¢ (¢) is
1+ L )
an={,_, YoaTin., i=1.2 (A10)
- P

where To(1) is the Chebyshev polynomial of the first kind of degree k and a,, are a doubly infinite set of real
cocllicients which must be determined by the solution process.

From the asymptotic behavior of b,($). eqns (AS) and (A6). the remote stress intensity factors K,° and the
crack tip stress intensity factors K, may be expressed in terms of a,,..

-
. _ TR l+a2) & i
K, _( ) (—l_v:)(m'_’>k§"( Dia, (AL

tJa N

and
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AN U2 =
K={5] ——) a Ald)
(2) (1=v:)y * (
where x is defined in eqn (3).

Equation (A1) represents two equations for the as in terms of the specified K'*s. and (Al2) are the two
equations for evaluating the Ks.

A.2. Solution of integral equation
When the representation for ¢,(1) = ,(¢). eqn (A10) is substituted into the integral eqn (AY). the first term
of (A9) maybe integrated exactly to give

' (u+ D) x
—_—— = - 7 3
f_' (u_l)(H_”c,(t)dl n(l +u)k}-:|a,*bk_.(u) (Al3)

where U,{(u) is the Chebyshev polynomial of the second kind of degree .

The factor of (1 + )" in the second term of eqn (A9) presents a problem in evaluation of the integral near
t = —1. Recalling the asymptotic behavior for /,,(J). eqn (A2). we proceed by introducing a function £ (J) in
order to extract a factor of (1 + 1) from £,,() :

[ 1
o Py AL y
FQ) =£,(0J+4 D) pirm (Al4)

where

w+! . B . .
pliu) = ——[(u+ D+ D) +@=-0°] '~

The function p(z, 1) is well behaved for o € 1 ju] € 1.
Substitution of (A14) and (A10) into the sccond term of (A9) then gives

@ YT fwa, <1 (ALS)
g ; (.
-l.”s‘l (I+I et 0 ‘
where
oplewy
{(u) = E - F QTN de. (A16)
VAT

Equation (A16) can be integrated numerically without further problems. However, to reduce computer time we
express the functions F,,({) by a Chebyshev series approximation. Noting that f, () and F, (]} are cither odd or
even in {, we write

. il ,os=1
F‘u(%) =k§| ‘lllkr“l(")— E‘I:/I' Y =.;1—l (A[7)

where s ranges from —1 to [, as { varies from — o to 0. The coeflicients d,, are found from the known kernel
functions F,,({). and the number of terms M is usually taken to be M = 40.

We can now rewrite the integral equation (A9) as a linear system of equations in a,,, via eqns (Al3) and
(Al5):

hl N
(1 +uw) Z a, U () + Z Lua, =0, |ul <1, i=12 (A18)
k -}

ke

where the infinite sums have been replaced by a finite sum in ¥+ | terms.
The truncated form of (A1) provides the additional equations

ad 2N =vy) =2
—_Va, =17 LA SR ¥ 19
‘;,( 1Ya, (n) e (l+1)k' (A1Y)

We solve for the 2(N+ 1) unknowns a, (i = 1.2. A =0,.... N) by satisfying (A18) at ¥ Gauss-Legendre points
for win the interval — 1 < u < 1, and also by satisfying (A19). A convergence study showed that an accuracy of
0.1% is achievable for N = 20, Once the coeflicients a,, hive been found for any remote loading K7, geometry
¢/ H and clastic constants z, fi, the local stress intensity factors at the crack tip in the adhesive layer are computed
from eqn (A12). The formula for the encrgy release rate, (5). forms a consistency check and provides a2 measure
of the accuracy of the solution procedure.

A.3. Evaluation of the T-stress
The stress @,,(x) at point x, = x, x; = 0 on the crack line induced by a dislocation A,(x, = {) is obtained
from the dislocation solution given in Appendix B:
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N 25,
g (x) = d—n—(lﬂ—-v——)( {s) +9,(Y—s)/’(s)) (A20)

where we continue with the summation convention for a repeated suffix i over 1 and 2. The non-singular kernel
g{x—23) is given in Appendix B.

When we represent the semi-infinite crack under a remote K* field by a distribution of dislocations along
the negative x, axis, the stress ¢,,(x) induced by the dislocations is

H: * 23

da(l-vy)Joc x=§

giix) = +yi(-\’—s’)h.(f)d5 (A2D)

where the first integral is the Cauchy Principal Value integral.
Using the change of variables (A7) and (A8). and the representation ¢,(1) = b,({) given by (A10), the Cauchy
part of {A2]) may be integrated analytically for x < 0 to give

9 9 <
Jf 80 4= —20 5 an(l4wUp o). —1<u<l. (A22)

R ko
In the limit x = 0", u = 1, g, ,(x) equals T and eqn (A22) reduces to

0 2,’:( ) . n ~
—d{ = —4n Y kay., x—0". (A23)
e X= o

n

Now consider the second term on the right-hand side of eqn (A21). With the chunge of variable & — ¢ specified
by eqn (A7), | given by eqn (AB) and ¢,(¢) = b,(&). we derive

0 1

N) = =3 (& 3 , { 4

1(x) J."!l.(\ b dS J ‘I(C)(()(I_H) (A29)

In the fimit v = 0 | the above integral 7(0 ) exists and provides a further contribution to the T-stress. In this
limit J = —&and (1 +1) = 2/(1 +). The troublesome (1 +¢)* fuctor in the denominator of the right-hand side of

e (A24) is removed by using representation (A10) for ¢,(1) and by separating out a fuctor (1 + 1) from ¢,({):
+1 Q)
A3) = A =, A2S
g =h (s)( ) e (A25)

The well-behaved function #,({), detined via (A25), is represented by & Chebyshev-series approximation in
M tenns

o
h() = ‘g‘d,,. To.n—Yd,, —-{= P (A26)

The coetlicients o are found from the known kernel functions 4,(0). and M is usually taken to be M = 40.
A particularly simple expression for the integral /(0 7) in (A24) is now obtained by substituting eqns (A10).
(A25) and (A26) into (A24), and by integrating analytically

\ A
noy=" 5 L audy (A27)

'l-l

where the upper limit of the sum is taken to be the smaller of terms N used in the representation for ¢,(¢), and the
number of terms M used in the representation for 2,(). As ¢lsewhere, the repeated suffix i denotes a sum over
i=12

The T-stress is given by substituting eqns (A23) and (A27) into eqn (A20):

NM 2
T=0,(x=0" )—(-l~~-—~-( Zl\a_‘+ Y ¥ o ,,,) (A28)

k-ll-l

Tabulated values for T are given in Appendix C, where representation (4) is used for T.

APPENDIX B: A DISLOCATION IN THE ADHESIVE LAYER

The dislocation solution used as the kernel in the integral eqn (Al) and in the expression for the T-stress,
eqn (A20). is summarized here.
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x5 R,, material =1
i
T ; T
' d
H‘ !’ X4
ic
' { R;. material #2

Ry, material «1

Fig. Bl. Edge dislocation in adhesive layer.

The plane clasticity problem is specified in Fig. Bl. An edge dislocation with components 6, and b, lies at
the origin a distance ¢ above the lower interface of the bonded sindwich structure. This dislocation lies a
distance o below the upper interfuce, and the thickness of the layer ts H = ¢+ 4. The solution is obtained by
supertmposing the solutions to two problems:

(1) An isolated dislocation at the origin in a full plane, made from material 2. The material in the half-plane
x> d and in the half-plane v, < —c is then allowed to transform from material 2 to material 1. We shall
allow the transtormation to occur in a manner which generates a displacement mismatch Au(x) at y = d and
¥ = —¢, but does not alter the stresses anywhere.

(2) A strip of material 2 of thickness H = ¢ +d. sandwiched between two half-planes of material |, with a
displacement mismatch of — Au(x) from Problem 1 at the boundaries between the two materials.

Problem |
The solution to an isolated distocation at the origin in a full plane made from material 2 is given compactly
by the Muskhelishvili potentials

p=dAlnz, Q=4dln:z (Bl)
where
I by, A= (hy=ib), o +a,, = 2P C)+P(2))
47!(1 -y .)
Gor =y #1200, = QT -2} (D) +Q(2) +4'(2)] (B2)

and the displacements w,, u; are given for plane strain by
2, +iny) = (3 =S () F (5 -2 (2) - 83). (BY)
The stresses at (2.0) induced by the dislocation are

By ’h‘
4n(l -v‘) ¢

. ne 2h .
a,:(q) = =Yy anfd) =

(B4)

We now let muterial 2 transtorm to material | for x, > d und x, < —¢, but keep the Muskhelishvili potentials
lixed. The stresses given by (B3) and (B4) remain unaltered but displacements change in region R, where v, > d,
and in region R, where v, < —¢. Detine the displacement jump at these boundaries Au by

Au =u;—uy

where @ refers to material | and © refers to material 2. The jump in displacement gradient

QA CAu,

; o
ox, o,

is derived from (B3) as

' cA CAu. +fi i R
4(,'_';;< o +-';-.'f") (Li)w »-(~- é)l(:'—:)«»"(:)-n'(:n (85)

which upon substitution for ¢, Q from (B1) and separation of real and imaginary parts gives
BAYS b, ’ R X, x: h, XX}
= - Q=) U= |+ | = 2 I—«i
cx, r:(l+1)[( ¥ /)r' (x l)r‘ n(l +7x) ﬂ (=M

CAu, h, X3 h, v}
S o= 2 R — i 2
&y n(l+z)[ﬂ 1 +2x=f) o ] n“+,)[lf +2(x—f)° ]

(B6)

where 7P = vl +xi
We superpose the solution to Problem 2 in order to cancel the displacement gradient mismatch given by (B6).
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Problem 2. Dislocation-free strip problem

Consider a dislocation-free strip of thickness # made from material 2. sandwiched between two half-planes
of material . A displacement gradient jump of equal magnitude and opposite sign to that specified by (B6) is
applied on x, = dand ¢, = —c. This displucement mismatch gives rise to stresses which are bounded everywhere.
Such a multilayer problem is solved conveniently using Fourier transforms with two real potentials {'(x,. x,) and
X(x,.x:): see Coker and Filon (1931). These potentials satisfy

e FrY .
ViU =0, VX=0, ——— = V(. (B7)
¢x, Cx,
The stresses and displacements can be derived from
(t:l_- (’:L' (31('
O =3 7. Onn=—7575. 0= — 373
AR\ CXy CXy CXy
cU cYX cU e
uu, = - i-+4(l —v)(.v~. . = — (, +4(1 =) f;— (BR)
X, €X, X, (AN

The general approach to the multilayer problem is as follows. For each layer, the solution of U(x. y) and
X (x. ¥) can be separated into two parts: one is symmetric in changing v to —x, and the other is antisymmetric.
A dislocation of strength b in Problem | induces a field in Problem 2 which can be represented by & symmetric
U, termed U'(x,. x;) and an antissmmetric X termed V*(x,. v, ). Conversely, a dislocation of strength A, gives
rise to an antisymumetric U, which we denote by U (v, 3) and a symmetric X, which we denote by Y'(x. ). We
shull consider the solution assoctated with A, and b, in wurn,

by solution. The potentials U, v) and Y (x, p), upon satisfying (B7). can be represented by Fourier integrals

! A | R M v Ay A ] « B
U v) = b, oA Sy et Lo+ e et Jeos Axvda
o | AT A L A

"t
N = I’,J oo ldie A e sindv dd (BY)

where the four coctlicients A, are functions ol 4,
Potentials U, vy and XU (x, v) exist for each of the three layers By, K, and R, shownin Fig. B The Fourier
coctlicients A, are designated Coin Ry, D in Ry and £, in R, Since U and V7 remain bounded as v, = 2 in Ry,

Cy = Cy=0by eqn (BY). Smilarly, £, = £, - 0in R, The stresses and displacements in cach Liyer are given by
eqns (B8).
The problem is to determine the coctlicients D, in the strip R, and thence the stresses in R, from the known

displacement gradient mismatch at v, = o, and x; = —¢ given by the b, solution in (B6). To proceed, we take
the appropriate Fourier transtorms Ad, | and Ad, , ot the displacement gradient mismatch QAw Qv and CAu, /Oy,
respectively

. 2 (* 2Au, .
Ady (4 X)) = cos v dy
' L 3

v,
S N I VIS
Atty ((A,x,) = - - sin Axd. (BLY)
e Oxy

Substitution of the b, part of (B6) into (B810) and evaluation of the integrals gives

o by (21 =idy+pid\ |
Atiy y(A,d) = x ( (1 +1) >u
by (il —id il
Aiiy (hadd) = |(/( A X )»+71>/l')c “l
n (1 +2) F
L. ) hofa(U=dcy+ficy | . (BLD)
Ady (4, —¢) = — i < e ')L
by (Bl —=ic)+2ic
i, =0 = (ML)
n (I+x) J
We determine D, by matching tractions and displacement gradients at the strip boundaries v, = dand x, = —¢.

in the transformed variable 4. Hence, in matrix form,

M,D+M,E =,
MD+M,C=v, (B12)

where
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-1 i —e sce
-1 (l+i0) e (I—ic)e ™
T
M, e 0 2 0 —-—2e"‘
pat
0 L2 0 e
[ -
-1 (re—1)

e —ide -1 —d
— (I=idye ¥ ! (I+4d)

e | (e ) (e
M, =c¢" - - - - 2
<’Ef)" ((’l‘:f)(/l- I+ f)g S (’l‘zf) -(?}2‘)14“ D+ f

™

2

| id
I Ad~1
M, = 0 1
0 -1
D,
D,
+12 (, - ,l
b = . D= R
e ‘ <('-'> ! b <[ ‘>
n,
0 0
H.x c—ullni 0 /t-f- ¢ ey 0
o= - 3(| ;.\'_.)- .d‘h,“ - A';Ll(}n o IR 2([-—”‘1:7) ” h, Ady (A.d)
Aty (A, ~¢) Anty (4, d)

FEquations (B12) can be combined to a single matrix equation

Mooa, oY g .
Moo agtElE R
which s solved by Gausstan climination in order to determine D.

b, solution. In similar manner, we can solve for the stresses and displacements in a strip of material 2 sandwiched
between two hall-planes of material 1, due to displacement mismatches on v, = dand v, = —¢. The displacement
mismatch is - Au(x) where Au is the displacement mismateh due to a dislocation of strength b, in Problem 1,
speciticd by egn (B6). The stresses and displacements are derived from C7 (v, v) and V(. p) which, upon satisfying
(B7). can be represented by the Fourier integral

‘1 (8B, B B, B
vy = h:j [(' + ‘r>c - +( ! }') v:“]sin Avdy
o VAR A4

1
Xy ) = —h:j 33 I:B_. e+ B, c“} cos Ax di (B14)

TRy A

where the four coefficients 8, like the coetlicients A, are functions of 4. We designate the Fourier coefficients 8,
by F,in R,. G,in R;and K, in R,. The stresses and displacements in each layer are given by (B8) as before.

The problem is to determine the coefficients G, in the strip R, from the known displacement gradient mismatch
at x, =dand x; = —c, given by the b, solution in (B6). To proceed, we take the Fourier transforms Ad, ; and
Ad,
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. . i 6A“| .
Ady \(4.x2) = ;J-“ Ksm ixdx
2 *dAu,
Ay (A xy) = “J‘ 3 2 cos ix dx. (B13)
Tly CX,

We now substitute the b, part of (B6) into (B!5) and evaluate the integrals, giv.ing

o b =B i +xid) )
Au..,(/..d) = ;‘(*‘-—‘m‘—)e
b, id)— Bad\ .
Aty \Ghd) = — "‘_‘“_"’JL e~
n (t+7) g
.. byf —B(l+ic)+2ic) _, | . (B16)
Ad, (4. —c) = - (——‘W)
. by —2(l+4c)+ Pac .
Adiy (A —c) = = | ——— " g%
4214 =) n( i+ )¢
After matching the tractions and the displacement gradients at the strip boundaries x, = d and v, = —c, we
obtain
M M 0 G
vy 2 ‘l - w, (817)
M, 0 M, w,
F 2
where
1
. G,
. F, . * i,
F= (F:)' G=lg, |, H= (lh)
G,
0 0
JE e A 0 JLE ¢ e 0
YT T —vy b, Ay =) [« W2 = Ty T [ AdAd)
Adiy (4, =) Adiy (A

and M, M MM are given by (B12), and Ad,, are given by (B16). Equation (B17) is solved by Gaussian
climination.

Superposition of the solutions to Problems | and 2
The stresses a distance { ahead of a dislocation are given by the superposition of the solutions to Problems
land 2

T
7,2(5) at (T"'ﬁ,(s)h,)

=‘i;l.(]."':)
" _ H: 2h, .
a,,({) = Imi—vy) (’C‘ +!I.(s)h.>

where, from (BS), (B9) and (Bl14)

o dr(l=vy) " ee s
fn(s)=‘——"“-—~ (=D, +D,+D,+Dy)sinigdi
2 0
3 - I3
[ =——u(17—v—’—)J‘ (=D, ~Dy)cos i{ di
2 o

dn(l—vy) [~
fl:(;)=—n(—“"l:')"[] (G\-G,;-G,—-G,)cos i{ d¢
. dn(l=vy) | " .
S2:0) = TVLJ; (=G,—Gy)sin i{ d{

and

8AS 27:13-C
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-

R (S 2% B i L
!Js(s}=m'”“"—ﬂ (D, 2D+ D,+ 1D jcos 2] da
N "
. dr(l=vy [ .
5?:(,)='~'-}:—-”_j (G, ~2G.+ G+ 2G s Al d4 (Bi%)
The integrals in (B18) are evaluated numericatly.
APPENDIX C: RESULTS FOR cfc H. 2 ). cyte Hoa D)
{05, 2.8 Accuracy = 0.1%  [o4{0.5. 2. ) = 0
x
i -09 ~08 -6 =04 -0.2 0 0.2 0.4 0.6 0.8 0.9
-0.4 520 278 1.27
-0.3 4.90 160 116 0.622 0.357
-{.2 4.59 241 LOo4 0,531 0277 0140 0070
-0.1 426 320 0916 0437 0.199 Q070 0002 -0.023 0020
0 191 200 0733 0336 a8 0 —g.060 —0.086 —0.082 0050 002
0.1 0634 0228 0.031 —0072 —0.423 0040 0132 009 -0.064
0.2 —0063 ~0.150 —0.189 —0.1%6 —0.179 0133 -—-0.095
0.3 —0.260 —0.255 0227 0170 —0.123
0.4 ~.278 ~0.207 0150
{060 Accuraey = 0.4%
x
B -09 - (1K ~{L6 -~ {hd -0.2 {3 0.2 4 0.6 .8 0.9
)4 s.3t 284 1.30
-3 5.00 265 1R 0.633 (1363
-~ {12 168 2.45 L6 (1530 0,282 0143 (.07
-1 438 22 0931 DAdd .202 8071 0002 0020 0022
[§] 99 202 4795 0342 84419 & ~04862 0087 ~0083 0051 0023
0.1 00634 023 0031 -0.073 —0.125 ~0.143 0133 0098 0066
02 0063 ~0152 0191 0199 0081 ~0. 1 -0.097
0.3 03263 0258 —0.229 0172 0135
0.4 ~ {1281 020 -0.152
ep(06, 1, 1) Accuracy = 0.5%
%
B -0.9 ~{1L8 ~{).6 - )4 -2 4] 0.2 .4 1.6 0.8 1.9
- {14 —-0.212 —0.098
~0.3 ~0.245 0113 ~0.054 0020
o 4 ~{.378 ~0.126 0060 —-0023 0000 0012
-1 -1 0138 -0066 —0.025 0000 0013 6,021 .023
() ~0.325 ~0.147 ~0.070 —0.026 0 0.016 0.024 0.026 0.022 0.017
0.1 ~155 ~0.072 0026 0,002 0.019 0.02% 0.030 0.026 0.020
0.2 -0.024 0,008 0023 0032 0035 0.034) 0.023
.3 0029 0,038 (L0460 4114 (026
3.4 8.0547 0040 G010
el T 2 Y Aceuracy = 0.1%
%
B -0.9 —~0.8 ~{1.6 -4 -0.2 [}] 0.2 0.4 (L6 0.8 0.9
~ 0.4 5.67 RXiX 138
{13 5.34 283 1.26 0.671 4.383
~{.2 5.00 2.61 1.13 0.572 0.298 8.150 0072
-).1 4.64 P 0.988 0469 0.213 0.074 0.001 ~0.03 —0.029
0 4.25 204 0.839  0.360 0.125 0 ~0.065 —0.092 0090 0060 -0.031
[t 8] 0.677  0.242 0.032 ~0.077 —0131 —0150 —004 -0ty —0072
0.2 -0.070 0160 —0200 —0207 0189 —0143 —0.103
0.3 —0.274 (268 ~023 -0.179 0130
04 -390 ~0.216 0156




Crack path selection in brittle adhesive layer 1703
an(0.7.2. ) Accuracy = 0.5%
x
B -09 -08 -06 -04 -0.2 0 0.2 04 0.6 08 0.9
-04 —0.448 —-0.210
—-0.3 —0.521 —0.243 —0.116 —0.044
-0.2 —0.585 ~0.272 —-0.130 —0.050 -0.002 -0.026
-0.1 —0.643 —0.297 —0.142 —0.055 —0.002 —-0.030 0.046 0.050
0 —0.695 —0.317 —0.150 —0.057 0 0.034  0.053 0.058 0.049 0.037
0.1 —-0.332 —-0.155 —-0.056 0.004 0.041  0.060 0.066 0.056 0.043
2 —0.051 0.012 0.050  0.070 0.076 0.065 0.049
0.3 0.063  0.083 0.087 0.074 0.057
04 0.102 0.086 0.066
(0.8, 2. ) Accuracy = 0.1%
x
B -09 08 -06 04 -0.2 0 0.2 04 0.6 0.8 09
-0.4
-0.3 0.757 0.429
—-0.2 0.643 0.334 0.165 0.074
-0.1 0.52§ 0238 0.083 —0.002 —0.041 —0.046
0 0.399 0.139 0 —0.073 —0.105 —0.106 -0.078 ~-0.049
0.1 0.033 —0.086 —0.0145 —0.165 —0.157 -0.120 -0.086
0.2 0082 0177 —-0.209 —0226 —-0.207 —-0.157 —-0.115
0.3 —-0.299 ~0.291 ~0257 ~0.093 ~0.141
04 —0.310 0230 -0.167
(08, 2, ) Accuracy = 0.8%
x
/ -09 ~{1.8 ~ (L6 ~-0.4 -0.2 {} 02 0.4 .6 0.8 0.9
~0.4 -0.351
~-0.3 ~0.410 0200 ~0.075
-0.2 ~0478 ~023) ~0.088 --0.002  0.050
-0.1 —=0.505 —0.250 ~0.097 —0.003  0.054 0.084 0.093
0 —~0.542 -0.265 —0.100 0 0.061 0.094 0.104 (1.OXK 0.066
0.1 —0.570 —0.271 —-0.097 0.008  0.073 0.107 017 0.100 0.076
0.2 —0.087 0.023  0.089 0,125 0134 0.114 0.087
0.3 0.113 048 0155 0.131 0.100
04 0.182 0.152 0.116
(2, 1) + etz ) (in radians)
x
B -0.8 -0.6 -04 -0.2 (1] 0.2 0.4 0.6 0.8
~04  —0.082 -0.01Y
-0.2 <0119 -0.045 -0.01! 0.000 ~0.011 —0.038
-0.1 =013 -0.057 -0.019 -0.002 -0.003 -0.017 -0.049 —0.121
0 -0.150 -0.071 =0.028 —-0.001 0 -0.007 -0.027 -0.070 -0.153
0.1 —-0.038 —~0.011 —0.001 <0001 —=0012 0039 <0.091
02 -0.004 0000 —-0004 ~0.021 -0.055
0.4 -0.017




